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Abstract. We study a quickest detection problem where the observation rate of the underlying process
can be increased at any time for higher precision, but at an observation cost that grows linearly in the
observation rate. This leads to a problem of combined control-and-stopping with incomplete information;
we show that the problem has a two-dimensional sufficient statistic comprised of the current observation
rate together with the conditional probability that disorder has already happened. The problem is shown
to have a semi-explicit solution, where for some parameter values it is too costly to exert control at all,
whereas for other parameter values the optimal strategy is to increase the observation rate in such a way
that the sufficient statistic reflects at a certain boundary until the optimal stopping time. In the latter
case, we characterise the reflection boundary and the optimal strategy with the help of appropriate smooth
fit conditions.

1. Introduction

In the quickest detection problem for a Wiener process, one seeks to detect a random disorder time θ,
as quickly as possible, given observations of the type

(1.1) dXt = 1{θ≤t}dt+ dWt,

where the additive noise W is a standard Brownian motion. In a Bayesian setting, where θ has an
exponential prior distribution, a standard formulation of the disorder detection problem is to minimise
the expression

(1.2) P
(
τ < θ

)
+ aE

[
(τ − θ)+

]
over random times τ that are stopping times with respect to the observation filtration {FXt }t≥0, and
where a > 0 is a given constant measuring the cost of detection delay. The solution to this problem can
be obtained using the fact that the conditional probability Πt = P(θ ≤ t|FXt ) is a diffusion process, thus
building on the connection between optimal stopping problems and free-boundary problems; for details
see, e.g., [22, Chapter 4]. In the current paper, we study the extension of the above problem to a situation
allowing for a controllable irreversible observation rate H, so that the underlying process instead is given
by

(1.3) dXt =
√
Ht1{θ≤t}dt+ dWt.

The aim is thus to minimise the expression

(1.4) P
(
τ < θ

)
+ aE

[
(τ − θ)+

]
+ bE

[ ∫ τ

0
Ht dt

]
over both stopping times τ and monotone controls H, where b > 0 contributes to the observation cost.
It should be noticed that, in this extension, the control H affects the learning rate through the belief
process Π = ΠH (refer to Section 2 for the details).

As a motivation for the above problem formulation, consider a situation where one may perform
countably many tests to detect θ, and where each test i results in an observation process

dXi
t = 1{θ≤t}dt+ dW i

t

Key words and phrases. quickest detection, stochastic control, optimal stopping, incomplete information, stochastic
filtering.
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of the type (1.1), where {W i}∞i=1 are independent standard Brownian motions. Moreover, at each instant
in time one may choose to irreversibly increase the number of tests that are currently run. If one chooses
to run exactly n tests during a certain time-interval, then the weighted sum X := (X1+X2+. . .+Xn)/

√
n

of the tests follows

dXt =
√
n1{θ≤t}dt+ dWt,

where W := (W 1 +W 2 + . . .+Wn)/
√
n is a standard Brownian motion. Our problem is thus a continuous

version of this model, i.e., when X follows (1.3) for an arbitrary monotone control H. The irreversible
feature of the control may be interpreted as an infinite cost of downsizing the new resources that have
been arranged to improve the detection. For instance, the increase in the testing rate may be seen as the
result of employing additional labour and/or devices in the detection, but in a situation where it is too
costly to reallocate the additional labour and/or to dismiss the devices.

In problems where the learning rate is controlled, one should note that the available observations
depend on the chosen control, which in turn is chosen based on observations of the system. This makes
the precise formulation of the above problem (1.3)-(1.4) cumbersome. In the current paper, we offer a
rigorous formulation based on changes of the probability measure (the so called “weak approach”) and
the Girsanov theorem, along with its solution. We provide the existence of two boundaries: a reflecting
boundary h 7→ C(h) and a stopping boundary h 7→ B(h). We then show that for some parameter values it
is too costly to exert control at all, whereas for other parameter values the optimal strategy is to increase
the observation rate in such a way that the two-dimensional process (H,Π) reflects along the boundary
C until it hits the boundary B, when it is optimal to stop (see Figure 1).

1.1. Related literature. The quickest detection problem for a Wiener process (1.2) is a classical problem
in optimal stopping and was studied, e.g., in [21] and [22, Chapter 4]; the literature on various extensions
of that set-up is vast. For example, [1] solves detection problems when the observation process is a Poisson
process with a changing jump intensity, [10] considers multidimensional detection problems, [12] studies
detection problems for general diffusion processes, and [17] investigates a case with a random post-change
drift.

Our problem combines stochastic control with optimal stopping and, given the nature of our control (a
right-continuous, increasing process), it is closely related to problems of singular control with discretionary
stopping. A few problems in this class have been solved explicitly (or semi-explicitly) and we mention,
among others, [4], [14], [16] and [2]. Notice that in these papers, and usually in problems of singular
control with discretionary stopping, the action region (where the control is exerted) and the stopping
region are separated and delimited by an upper boundary and lower boundary which do not intersect. A
peculiar feature of our problem is instead that the reflecting boundary and the stopping boundary are two
upper boundaries and have an intersection point. In fact, when the starting point lies below the reflecting
boundary, it is optimal to stop at the first time the belief process Π hits the level at which the reflecting
boundary intersects the stopping boundary.

More specifically, our detection problem with monotone learning rate is a problem of combined control,
filtering and stopping, in which the control directly influences the learning rate. The literature
on such problems is much more sparse, with a few notable exceptions. In [5], a case with a monotone
observation rate is studied, and with a cost proportional to Hτ (in our notation) which thus represents
a purchasing cost, but with no running cost (in our notation, b = 0). Using an assumption that H
can only take values in a discrete set, the optimisation problem in [5] reduces to a sequence of stopping
problems, each of which with a fixed learning rate. Our set-up is very similar to the one in [3], with the
key difference that the control H in [3] is not necessarily monotone. In that case, the sufficient statistic
consists of merely the conditional probability that the disorder has already happened. The problem
becomes thus one-dimensional and the structure of the solution is completely different from ours. The
authors show the existence of a double threshold strategy, in terms of which the optimal control pair
(τ,H) can be described. Finally, for a sequential estimation problem with costly control of the learning
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rate, we refer to [7], and for related articles within various fields of applications, we refer to [8], [13] and
[23].

1.2. Outline of the paper. In Section 2 we formulate the problem via the so called “weak approach”
and we provide a Verification theorem. In Section 3 we study the uncontrolled problem, where the
observation rate is constant H ≡ h ∈ [0,∞), which leads to the candidate stopping boundary. In Section
4 we extend the problem of Section 3 to allow for an increasing controllable observation rate and we obtain
the candidate reflecting boundary. In Section 5 we investigate the geometry of the problem by studying
some properties of the boundaries. In Section 6 we provide the solution of the problem. We conclude the
paper with Appendix A, where we gather some technical results.

2. Problem formulation and verification theorem

Let (Ω,F ,P) be a complete probability space supporting a standard Brownian motion X = (Xt)t≥0

and a random variable θ which is independent of X and satisfies

P(θ = 0) = π ∈ [0, 1) and P(θ > x| θ > 0) = e−λx,

where λ > 0 is a given constant; thus, conditional on being non-zero, θ is exponentially distributed with
intensity λ. Let F = (Ft)t≥0 be the smallest right-continuous filtration to which the process X is adapted;
similarly, let G = (Gt)t≥0 be the smallest right-continuous filtration to which the pair (X, θ) is adapted.

Denote by A the collection of F-progressively measurable non-negative processes on [0−,∞) that are
right-continuous, non-decreasing and bounded; for h ≥ 0, denote by Ah the sub-collection of controls with
initial condition H0− = h, i.e.,

Ah := {H ∈ A : H0− = h}.
For each H ∈ A and each t ∈ [0,∞), we define the equivalent measure PHt ∼ P on (Ω,Gt) by

dPHt
dP

:= exp

{∫ t

0

√
Hs1{θ≤s} dXs −

1

2

∫ t

0
Hs1{θ≤s} ds

}
=: ηHt .

The measure change process η = ηH = (ηHt )t≥0 is then a (P,G)-martingale, and E[ηt] = 1; consequently,
each PHt is a probability measure on (Ω,Gt). Moreover, we may assume the existence of a probability
measure PH on

G∞ := σ(∪0≤t<∞Gt)
such that PH |Gt = PHt (this can be guaranteed, e.g., by the theory of the so called Föllmer measure,
cf. [11]). By the Girsanov theorem,

Xt =

∫ t

0

√
Hs1{θ≤s} ds+WH

t ,

where WH is a standard (PH ,G)-Brownian motion. In particular, WH is independent of G0, so WH and
θ are independent under PH ; moreover, denoting EH the expectation under PH , we have

P(θ > t) = E[1{θ>t}] = EH [1{θ>t}η
H
0 ] = PH(θ > t),

where the second equality comes from the fact that θ is G0-measurable, so the law of θ is the same under
PH as under P.

Denote by T the collection of F-stopping times. Here and in the rest of the paper, if not specified
otherwise, we fix a starting point (h, π) ∈ [0,∞) × [0, 1). For an admissible pair (H, τ) ∈ Ah × T , we
define the associated expected cost

(2.1) J(H, τ ;π) := EHπ
[
1{τ<θ} + a(τ − θ)1{τ≥θ} + b

∫ τ

0
Ht dt

]
,

where the sub-index is used to indicate the probability that θ = 0. Here a > 0 contributes to the
penalisation of a late detection of θ, and b > 0 specifies the running observation cost. Our objective
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problem is then to minimise the expected cost in (2.1) over all admissible strategies, i.e., we want to
study the combined control-and-stopping problem

(2.2) V (h, π) := inf
(H,τ)∈Ah×T

J(H, τ ;π).

Remark 2.1. Notice that in the minimisation problem (2.2) we can consider, without loss of generality,
only pairs (H, τ) ∈ Ah × T such that EHπ [τ ] < ∞. Indeed, let (H, τ) ∈ Ah × T such that EHπ [τ ] = ∞.
Then,

J(H, τ ;π) ≥ aEHπ
[
τ1{τ≥θ}

]
− aEHπ

[
θ1{τ≥θ}

]
≥ aEHπ

[
τ1{τ≥θ}

]
− aEHπ

[
θ
]
.

Moreover,

EHπ [τ ] = EHπ [τ1{τ≥θ}] + EHπ [τ1{τ<θ}],

and since the second term is bounded by EHπ [θ] = (1− π)/λ <∞, we obtain

EHπ [τ1{τ≥θ}] =∞.

Hence,

J(H, 0;π) = 1− π <∞ = J(H, τ ;π),

i.e., (H, 0) ∈ Ah × T is a better strategy than (H, τ) ∈ Ah × T whenever EHπ [τ ] =∞.

The problem (2.2) will be analysed by means of the sufficient statistic (H,ΠH), where the belief process
ΠH := (ΠH

t )t≥0 is defined by

ΠH
t := PH(θ ≤ t| Ft).

By conditioning, we then have that

J(H, τ ;π) = EHπ
[
1−ΠH

τ + a

∫ τ

0
ΠH
t dt+ b

∫ τ

0
Ht dt

]
for every (H, τ) ∈ Ah × T .

Following the innovations approach to stochastic filtering, we introduce the process

ŴH
t = Xt −

∫ t

0

√
HsΠ

H
s ds,

which is a (PH ,F)-martingale; moreover, it has continuous paths and quadratic variation [ŴH ]t = t, so

by Levy’s theorem, ŴH is a (PH ,F)-Brownian motion. Using the explicit representation

ΠH
t =

ΦH
t

1 + ΦH
t

,

where

ΦH
t =

eλt

1− π
eZ

H
t

(
π + (1− π)λ

∫ t

0
e−λu−Z

H
u du

)
and

ZHt :=

∫ t

0

√
Hs dXs −

1

2

∫ t

0
Hs ds

(see, e.g., [3, Lemma 3.6]), one obtains from an application of Ito’s formula that

(2.3) dΠH
t = λ(1−ΠH

t ) dt−Ht(Π
H
t )2(1−ΠH

t ) dt+
√
Ht ΠH

t (1−ΠH
t ) dXt,

and

(2.4) dΠH
t = λ(1−ΠH

t ) dt+
√
Ht ΠH

t (1−ΠH
t ) dŴH

t .

We now present a verification theorem for our problem.
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Theorem 2.2 (Verification Theorem). Let (h, π) ∈ [0,∞)× [0, 1) and assume that v : [0,∞)× [0, 1)→ R
is a continuous function such that 0 ≤ v(h, π) ≤ 1− π. If

(i) for any admissible strategy H ∈ Ah, the process Y = Y H := (Yt)t≥0, defined by

(2.5) Yt := v(Ht,Π
H
t ) + a

∫ t

0
ΠH
s ds+ b

∫ t

0
Hs ds,

is a (PH ,F)-submartingale,

then v(h, π) ≤ V (h, π).
In addition to (i), assume that there also exists an admissible strategy (H∗, τ∗) ∈ Ah × T such that

(ii) the process (Y ∗t∧τ∗)t≥0, where Y ∗t is defined by

Y ∗t := v(H∗t ,Π
H∗
t ) + a

∫ t

0
ΠH∗
s ds+ b

∫ t

0
H∗s ds,

is a (PH∗
,F)-martingale;

(iii) PH∗
(τ∗ <∞) = 1;

(iv) v(H∗τ∗ ,Π
H∗
τ∗ ) = 1−ΠH∗

τ∗ .

Then, v(h, π) = V (h, π) and (H∗, τ∗) is optimal for the problem in (2.2).

Proof. Let (h, π) ∈ [0,∞) × [0, 1). We first want to prove that v(h, π) ≤ V (h, π). Let (H, τ) ∈ Ah × T
and, without loss of generality, assume that PH(τ < ∞) = 1 (recall Remark 2.1). Since Y is a PH -
submartingale, by assumption, and n ∧ τ is a bounded stopping time for every n ∈ N, we obtain by
optional sampling and the fact that v(h, π) ≤ 1− π that

v(h, π) ≤ EHπ [Yτ∧n] ≤ EHπ
[
1−ΠH

τ∧n +

∫ τ∧n

0
(aΠH

s + bHs) ds

]
→ J(H, τ ;π)

as n → ∞, where the last step follows from bounded and monotone convergence. This gives our first
desired result v(h, π) ≤ V (h, π).

To show the opposite inequality and conclude, note that (ii), (iv) and v ≥ 0 imply

v(h, π) = EH
∗

π [Yτ∗∧n] ≥ EH
∗

π

[
(1−ΠH∗

τ∗ )1{τ∗≤n} +

∫ τ∗∧n

0
(aΠH∗

s + bH∗s ) ds

]
→ J(H∗, τ∗;π)

as n → ∞, which shows that v(h, π) ≥ V (h, π). Consequently, v(h, π) = V (h, π), and (H∗, τ∗) is an
optimal strategy. �

3. The uncontrolled problem

In this section we provide the solution of the uncontrolled problem, in which the observation rate is
fixed Ht = h ∈ [0,∞) for every t ∈ [0,∞). Since we consider strategies of the form H ≡ h, we use the
notation Ph and Πh instead of PH and ΠH (and similarly in other expressions).

Let V h be the cost function associated to the uncontrolled problem, i.e.,

(3.1) V h(π) := inf
τ∈T

Ehπ
[
1−Πh

τ + a

∫ τ

0
Πh
t dt+ bhτ

]
,

where the process Πh follows (2.4) with H ≡ h. In line with the classical case for which b = 0 (see [21]),
we would expect the existence of a number B = B(h) ∈ [0, 1) such that the value function V h solves

(3.2)


LhV h + aπ + bh = 0 π < B(h)

V h(π) = 1− π π ≥ B(h)
V h
π (B(h)) = −1

λV h
π (0+) + bh = 0,
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where

LhV h := h
π2(1− π)2

2
(V h)′′(π) + λ(1− π)(V h)′(π).

Here the third equation is the condition of smooth fit, which is standard in optimal stopping theory,
cf. [22]; the last equation in (3.2) is obtained from formally plugging in π = 0 into the first equation,
cf. [9]. Moreover, B would be the stopping barrier for the problem (3.1) and, thus, the stopping time
τB := inf{t ≥ 0 : Πh

t ≥ B(h)} should be optimal in (3.1).
To construct a solution (V h, B(h)) to the above free-boundary problem, define F : (0,∞)× (0, 1)→ R

by

(3.3) F (h, π) := − aπ + bh

λ(1− π)
+

1

λ

∫ π

0

a+ bh

(1− y)2

(
f(y)

f(π)

) 2λ
h

dy, (h, π) ∈ (0,∞)× (0, 1),

where

(3.4) f(y) :=
y

1− y
e
− 1
y , y ∈ (0, 1).

The function F solves, for every (h, π) ∈ (0,∞)× (0, 1), the ordinary differential equation (ODE)

(3.5) h
π2(1− π)2

2
Fπ(h, π) + λ(1− π)F (h, π) + aπ + bh = 0

(note, from (3.2), that this is the equation that V h
π is expected to solve). Moreover, we extend the domain

of definition of F to [0,∞)× [0, 1) by setting

(3.6) F (0, π) := − aπ

λ(1− π)
, π ∈ (0, 1),

and

(3.7) F (h, 0) := −bh
λ
, h ∈ [0,∞).

We now study some properties of the function F . We first determine its regularity.

Proposition 3.1. The function F defined in (3.3), (3.6) and (3.7) satisfies F ∈ C1([0,∞) × [0, 1)).
Moreover,

Fπ(0, π) = − a

λ(1− π)2
,

Fπ(h, 0) = −(a+ bh)

λ
,

Fh(h, 0) = − b
λ
,

and

Fh(0, π) =
aπ2 − 2λb

2λ2(1− π)

for (h, π) ∈ [0,∞)× [0, 1).

Proof. The proof of Proposition 3.1 is presented in Appendix A. �

Remark 3.2. The general solution F of the ODE (3.5) is

F (h, π) :=
K(h)

(f(π))2λ/h
− aπ + bh

λ(1− π)
+

1

λ

∫ π

0

a+ bh

(1− y)2

(
f(y)

f(π)

) 2λ
h

dy

for an arbitrary function h 7→ K(h). However, K ≡ 0 is the only choice for which the solution does not
explode for small π; also note that the choice K ≡ 0 gives (3.7), which corresponds to the last condition
in (3.2).
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Lemma 3.3. We have Fπ < 0 on [0,∞)× [0, 1). Moreover,

lim
π→1

F (h, π) = −∞.

Proof. For h = 0 and for π = 0, the assertion Fπ < 0 is immediate from Proposition 3.1. Also, if
(h, π) ∈ (0,∞)× (0, 1), then from (3.5) we have that

Fπ(h, π) = − 2

hπ2(1− π)

[
aπ + bh

1− π
+ λF (h, π)

]
= − 2

hπ2(1− π)

∫ π

0

a+ bh

(1− y)2

(
f(y)

f(π)

) 2λ
h

dy < 0.

For the asymptotics as π → 1, note that if h > 0, then∫ π

0

1

(1− y)2

(
f(y)

f(π)

) 2λ
h

dy ≤
∫ π

0

1

(1− y)2

(
y(1− π)

π(1− y)

) 2λ
h

dy

=
h

2λ+ h

π

1− π
,

so

F (h, π) ≤ − aπ + bh

λ(1− π)
+
a+ bh

λ

h

2λ+ h

π

1− π

=
−2λaπ − bh2(1− π)− 2λb

λ(2λ+ h)(1− π)

≤ −2λb

λ(2λ+ h)(1− π)
→ −∞

as π → 1. �

Lemma 3.3 leads to the following proposition which characterises the optimal stopping barrier B = B(h)
for the uncontrolled problem (3.1).

Proposition 3.4. For every h ∈ [0, λ/b], there exists a unique B = B(h) ∈ [0, 1) such that

(3.13) F (h,B) = −1.

Moreover,

(3.14) B(0) =
λ

a+ λ
,

(3.15) B(λ/b) = 0

and

(3.16) B(h) ≥ λ− bh
λ+ a

.

Proof. From (3.7) we obtain, for every h ∈ [0, λ/b), that F (h, 0) ∈ (−1, 0]. From Lemma 3.3, we have that
π 7→ F (h, π) is strictly decreasing with limπ→1 F (h, π) = −∞. By Proposition 3.1, the map π 7→ F (h, π)
is continuous on [0, 1), and thus it follows that there exists a unique B = B(h) such that (3.13) holds.
Equation (3.14) follows immediately from (3.6) and (3.13), and (3.15) follows from (3.7). By (3.3),
F (h, π) ≥ − aπ+bh

λ(1−π) , so

F
(
h,
λ− bh
λ+ a

)
≥ −1,

which proves (3.16). �

The candidate optimal stopping barrier B = B(h) is thus defined by the smooth-fit equation (3.13) for
every h ∈ [0, λ/b], and we extend it by continuity by letting

(3.17) B(h) := 0, ∀ h ∈ (λ/b,∞).

We now provide the solution of the uncontrolled problem (3.1).
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Theorem 3.5. Let π ∈ [0, 1). For every h ∈ [0,∞), let B = B(h) be defined by (3.13) and (3.17). Then,

(3.18) V h(π) =

{
1−B −

∫ B
π F (h, x) dx π < B,

1− π π ≥ B.
Moreover, the stopping time

τB := inf{t ≥ 0 : Πh
t ≥ B}

is optimal in (3.1).

Proof. Fix h ≥ 0, and denote by vh the function on the right-hand side of (3.18). Since −1 ≤ F (h, π) ≤ 0
for π ≤ B(h), we have that 0 ≤ vh(π) ≤ 1− π for all π ∈ [0, 1). For π < B(h) we have

Lhvh + aπ + bh = 0

by construction, and for π > B(h) we have vh(π) = 1− π, so

Lhvh + aπ + bh = (a+ λ)π + bh− λ ≥ 0,

where the inequality follows from (3.16). Therefore, it is straightforward to check that the process

Yt := vh(Πh
t ) + a

∫ t

0
Πh
s ds+ bht

is a (Ph,F)-submartingale. Moreover, the stopped process Yt∧τB is a (Ph,F)-martingale, and vh(Πh
τB

) =

1−Πh
τB

. For finiteness of τB, the argument in Lemma 6.4 below can be used. The result therefore follows
from an immediate adaption of Theorem 2.2 to the current case of no control. �

4. The controlled problem: A reflecting boundary

The remainder of the paper is now devoted to the study of the controlled detection problem (2.2), i.e.
the problem

V (h, π) := inf
(H,τ)∈Ah×T

EHπ
[
1−ΠH

τ + a

∫ τ

0
ΠH
t dt+ b

∫ τ

0
Ht dt

]
.

The solution of the problem will be described in terms of two upper boundaries, B and C, where B is the
stopping boundary defined as in Section 3 and C is a reflection boundary to be introduced below. The
optimal strategy (H∗, τ∗) then consists of increasing H∗ so that the two-dimensional process (H∗,ΠH∗

)
reflects along the boundary C as long as C(H∗t ) < B(H∗t ) and then stopping at τ∗, the first time that
ΠH∗
t = C(H∗t ) = B(H∗t ). Below, we will denote by h̄ the smallest h such that B(h) ≤ C(h). For a picture

of B, C and a path of the optimally controlled process (H∗,ΠH∗
) see Figure 1.

In the current section we construct and study the reflection boundary h 7→ C(h). To do that, note
that classical arguments based on the dynamic programming principle suggests that the value function
V (h, π) satisfies the variational inequality

min {LV + aπ + bh, Vh, 1− π − V } = 0,

where

(4.1) L := h
π2(1− π)2

2
∂2
π + λ(1− π)∂π.

Using the conjecture that we have a reflecting upper boundary C on [0, h̄) and an upper stopping boundary
B on [h̄,∞), we formulate a free-boundary problem

(4.2)


(LV )(h, π) + aπ + bh = 0 π < B(h) ∧ C(h)

Vh(h,C(h)) = 0 0 ≤ h < h̄
V (h,B(h)) = 1−B(h) h ≥ h̄
λVπ(h, 0+) + bh = 0.
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Figure 1. The stopping boundary h 7→ B(h) (in blue), the reflecting boundary h 7→ C(h)
(in red) and a sample path of the optimally controlled process (H∗,ΠH∗

), which reflects
along the boundary h 7→ C(h) until the time τ∗ when H∗ reaches h̄ and the problem is
optimally stopped.

Additionally, in accordance with the general theory of optimal stopping, along the stopping boundary we
impose the smooth-fit condition

Vπ(h,B(h)) = −1, h ≥ h̄.

Recall also that the boundary condition along reflection boundaries for two-dimensional problems with
degenerate dynamics of the controlled process is given by a vanishing second mixed derivative of the value
function, cf. [6] and [15]. Since our problem is of the same type (albeit with the additional complication
that the diffusion coefficient depends on the controlled process), we will construct a candidate value
function by also imposing a vanishing mixed derivative condition

Vhπ(h,C(h)) = 0, h < h̄,

along the reflection boundary, and then verify its optimality.
Note that the differential equation in (4.2) is the same as the ODE appearing in the uncontrolled

problem, compare (3.2). The candidate value function V that we will produce will thus satisfy Vπ = F ,
where F is the function defined in (3.3), (3.6)-(3.7). Consequently, the mixed derivative will involve the
function G(h, π) := Fh(h, π), for which we have the following characterisation.

Proposition 4.1. For every (h, π) ∈ (0,∞)× (0, 1), the function G(h, π) := Fh(h, π) is given by

(4.3) G(h, π) =
2

h2

∫ π

0

ay + λ(1− y)F (h, y)

y2(1− y)2

(
f(y)

f(π)

) 2λ
h

dy,

and it satisfies the equation

(4.4) h
π2(1− π)2

2
Gπ(h, π) + λ(1− π)G(h, π)− aπ

h
− λ(1− π)

h
F (h, π) = 0.
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Proof. First note that

∂y

(
F (h, y)

(
f(y)

f(π)

) 2λ
h

)
=

(
Fy(h, y) +

2λF (h, y)

hy2(1− y)

)(
f(y)

f(π)

) 2λ
h

= −2
ay + bh

hy2(1− y)2

(
f(y)

f(π)

) 2λ
h

,

where the second equality comes from (3.5). Consequently, using integration by parts, we have

2

∫ π

0

ay + bh

y2(1− y)2

(
f(y)

f(π)

) 2λ
h

ln
f(y)

f(π)
dy =

∫ π

0

hF (h, y)

y2(1− y)

(
f(y)

f(π)

) 2λ
h

dy.

Now, differentiation of F in (3.3) gives

G(h, π) =
2

h2

∫ π

0

ay

y2(1− y)2

(
f(y)

f(π)

) 2λ
h

dy +
4λ

h3

∫ π

0

ay + bh

y2(1− y)2

(
f(y)

f(π)

) 2λ
h

ln
f(y)

f(π)
dy

=
2

h2

∫ π

0

ay + λ(1− y)F (h, y)

y2(1− y)2

(
f(y)

f(π)

) 2λ
h

dy,

which is (4.3). Finally, the ODE in (4.4) is obtained by dividing by h the ODE in (3.5) and then
differentiating it with respect to h, or, alternatively, by direct differentiation of (4.3). �

Since G := Fh, by Proposition 3.1 we have G ∈ C([0,∞)× [0, 1)) with

(4.5) G(0, π) =
aπ2 − 2λb

2λ2(1− π)
, π ∈ (0, 1),

and

(4.6) G(h, 0) = − b
λ
, h ∈ [0,∞).

The asymptotic behaviour of G is described by the following lemma.

Lemma 4.2. Let h ∈ [0,∞). Then, we have

lim
π→1

G(h, π) =

{
+∞ if a > 2λb,

−∞ if a < 2λb.

Moreover, limπ→1G(h, π) < 0 if a = 2λb.

Proof. The proof is presented in Appendix A. �

The previous lemma leads us to the definition of the reflecting boundary h 7→ C(h).

Proposition 4.3. Let h ∈ [0,∞). If a ≤ 2λb, then G(h, π) < 0 for every π ∈ [0, 1). If a > 2λb, then the
equation

(4.7) G(h,C) = 0

has a unique solution C = C(h) ∈ (0, 1), with

(4.8) C(0) =

√
2λb

a
.

Moreover,

G(h, π) < 0 ⇔ π < C(h),

G(h, π) > 0 ⇔ π > C(h)
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and

Gπ(h,C(h)) > 0.

Proof. If h = 0, then the proof and, in particular, equation (4.8) follow immediately from (4.5).
Fix h ∈ (0,∞) and notice that, by substituting the form of F in (3.3) into the equation (4.4), we obtain

(4.9) h
π2(1− π)2

2
Gπ(h, π) + λ(1− π)G(h, π) =

1− π
hf(π)

2λ
h

ψ(h, π), π ∈ (0, 1).

where

ψ(h, π) := − bh

1− π
f(π)

2λ
h +

∫ π

0

a+ bh

(1− y)2
f(y)

2λ
h dy.

Then, ψ(h, 0) = 0 and

(4.10) ψπ(h, π) =
f(π)

2λ
h

π2(1− π)2
(aπ2 − 2λb).

Recall that, by (4.6), we have G(h, 0) < 0. Let

C = C(h) := inf{π ≥ 0 : G(h, π) ≥ 0} ∧ 1

and notice that G(h,C) = 0 and Gπ(h,C) ≥ 0 if C ∈ (0, 1).
If a ≤ 2λb, then ψπ(h, π) < 0 by (4.10), and so ψ(h, π) < 0 for every π ∈ (0, 1). Thus, by equation

(4.9), we necessarily have C = 1, i.e., G(h, π) < 0 for every π ∈ [0, 1).
If a > 2λb, by G(h, 0) < 0, limπ→1G(h, π) = +∞ (Lemma 4.2) and continuity of π → G(h, π), we

obtain that C ∈ (0, 1). Moreover, by equation (4.9) we have ψ(h,C) ≥ 0, and therefore ψ(h, π) > 0 for
every π ∈ (C, 1) and ψπ(h, π) > 0 for every π ∈ [C, 1). This guarantees uniqueness of the solution to
equation (4.7). To see this, we first claim that Gπ(h,C) > 0. Indeed, if Gπ(h,C) = 0, then we would
have Gππ(h,C) ≤ 0, but differentiating (4.9) shows that 0 = G = Gπ ≥ Gππ is in contradiction with
ψπ(h,C) > 0. Consequently, Gπ(h,C) > 0, so G(h, π) > 0 in a right neighbourhood of C. Moreover, if
π̄ := inf{π > C : G(h, π) ≤ 0} ∧ 1 satisfies π̄ < 1, then Gπ(h, π̄) ≤ 0, G(h, π̄) = 0 and ψ(h, π̄) > 0, which
contradicts equation (4.9). �

If a > 2λb, then the reflecting boundary h 7→ C(h) is defined by equation (4.7). If a ≤ 2λb, we then
define by convention C(h) = 1 for every h ∈ [0,∞).

5. Behaviour of the boundaries

In this section we study some properties of the stopping boundary h 7→ B(h) and of the reflecting
boundary h 7→ C(h). In particular, we want to determine their regularity, in what regions they are
monotonic and what is their respective position. When we study C, we assume throughout this section
that a > 2λb so that C(h) < 1 for every h ∈ [0,∞).

Proposition 5.1. We have that B ∈ C1([0, λ/b]) and C ∈ C1([0,∞)), with

(5.1) B′(h) = − G(h,B(h))

Fπ(h,B(h))
, h ∈ [0, λ/b],

and

(5.2) C ′(h) = −Gh(h,C(h))

Gπ(h,C(h))
, h ∈ [0,∞).

Proof. The boundaries B and C are, respectively, determined by the implicit equations (3.13) and (4.7).
Thus, the statement of the proposition follows from the implicit function theorem and the fact that
Fπ(h,B(h)) < 0 for every h ∈ [0, λ/b) (by Lemma 3.3) and Gπ(h,C(h)) > 0 for every h ∈ [0,∞) (by
Proposition 4.3). �
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To determine the sign of C ′ in (5.2), we need to study the function Gh, for which we have the following
proposition.

Proposition 5.2. For every h ∈ (0,∞), we have that Gh(h,C(h)) < 0.

Proof. As in the proof of Proposition 4.1,

∂y

(
G(h, y)

(
f(y)

f(π)

) 2λ
h

)
=

(
Gy(h, y) +

2λG(h, y)

hy2(1− y)

)(
f(y)

f(π)

) 2λ
h

= 2
ay + λ(1− y)F (h, y)

h2y2(1− y)2

(
f(y)

f(π)

) 2λ
h

,

where the second equality uses (4.4). Applying integration by parts, we thus have

2

∫ π

0

ay + λ(1− y)F (h, y)

y2(1− y)2

(
f(y)

f(π)

) 2λ
h

ln
f(y)

f(π)
dy = −h2

∫ π

0

G(h, y)

y2(1− y)

(
f(y)

f(π)

) 2λ
h

dy.

Differentiating G in (4.3) then yields

Gh(h, π) = −2

h
G(h, π) +

2λ

h2

∫ π

0

G(h, y)

y2(1− y)

(
f(y)

f(π)

) 2λ
h

dy

−4λ

h4

∫ π

0

ay + λ(1− y)F (h, y)

y2(1− y)2

(
f(y)

f(π)

) 2λ
h

ln
f(y)

f(π)
dy

= −2

h
G(h, π) +

4λ

h2

∫ π

0

G(h, y)

y2(1− y)

(
f(y)

f(π)

) 2λ
h

dy

=
4

h2

∫ π

0

λ(1− y)G(h, y)− ay
h −

λ(1−y)
h F (h, y)

y2(1− y)2

(
f(y)

f(π)

) 2λ
h

dy

= −2

h

∫ π

0
Gπ(h, y)

(
f(y)

f(π)

) 2λ
h

dy,

where the last equality uses (4.4).
Finally, applying integration by parts and using that G(h,C(h)) = 0, we obtain

Gh(h,C(h)) =
4λ

h2

∫ C(h)

0

G(h, y)

y2(1− y)

(
f(y)

f(C(h))

) 2λ
h

dy < 0,

where the inequality follows since G(h, y) < 0 for every y ∈ [0, C(h)) by Proposition 4.3. �

Proposition 5.2 allows us to obtain the monotonicity of the reflecting boundary h 7→ C(h).

Corollary 5.3. For every h ∈ (0,∞), we have that C ′(h) > 0.

Proof. By Proposition 4.3, we have that Gπ(h,C(h)) > 0. Thus, by Proposition 5.2 and (5.2) we obtain
that C ′(h) > 0. �

Let

(5.3) h̄ := inf{h ≥ 0 : C(h) ≥ B(h)}.

If a ≤ 2λb, then h̄ = 0 since C(0) = 1 and B(0) < 1. If a > 2λb, since C(0) > 0 (recall (4.8)),
h 7→ C(h) is increasing (by Corollary 5.3) and B(h) = 0 for every h ≥ λ/b (recall (3.17)), we must have
h̄ < λ/b. Moreover, we have the following proposition, which in particular implies that h 7→ B(h) attains
its maximum at h̄.
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Proposition 5.4. We have that B′(h) > 0 for every h ∈ [0, h̄) if h̄ > 0. Moreover, B′(h̄) ≤ 0 and
B′(h) < 0 for every h ∈ (h̄, λ/b). Consequently, if a > 2λb, then C(h) > B(h) for every h > h̄.

Proof. Recall that, by Lemma 3.3, we have that Fπ(h, π) < 0 for every (h, π) ∈ [0,∞)× (0, 1).
If a ≤ 2λb (and so h̄ = 0), then by Lemma 4.2 we have that G(h, π) < 0 for every (h, π) ∈ [0,∞)× [0, 1).

Therefore, by (5.1), we obtain that B′(h) < 0 for every h ∈ [0, λ/b).
Now let a > 2λb. If h̄ > 0, since B(h) > C(h) for every h ∈ [0, h̄), then by Proposition 4.3 we have

that G(h,B(h)) > 0 and so, by (5.1), we obtain that B′(h) > 0 for every h ∈ [0, h̄). Since C(h̄) ≥ B(h̄),
then by Proposition 4.3 we have that G(h̄, B(h̄)) ≤ 0 and so, by (5.1), we obtain that B′(h̄) ≤ 0. Since
C ′(h̄) > 0, then by continuity there exists δ > 0 such that C(h) > B(h) for every h ∈ (h̄, h̄+ δ] and so, by
Proposition 4.3, G(h,B(h)) < 0 for every h ∈ (h̄, h̄ + δ]. Hence, by (5.1), we obtain B′(h) < 0 for every
h ∈ (h̄, h̄+ δ]. Suppose by contradiction that there exists h0 ∈ (h̄, λ/b) such that B′(h0) ≥ 0 and let

ĥ := inf{h ∈ (h̄, λ/b) : B′(h) ≥ 0} > h̄+ δ.

Then, by continuity of B′, we must have B′(ĥ) = 0. By (5.1), this is equivalent to G(ĥ, B(ĥ)) = 0 and

thus, by definition (4.7), we obtain B(ĥ) = C(ĥ). This is a contradiction because C(h̄) ≥ B(h̄), C ′(h) > 0

for every h ∈ [0,∞) and B′(h) < 0 for every h ∈ (h̄, ĥ) by construction. Hence, C(ĥ) > B(ĥ) which
proves that B′(h) < 0 for every h ∈ (h̄, λ/b). This also implies that C(h) > B(h) for every h > h̄.

�

Let us now define

(5.4) b̄ :=
aλ

2(a+ λ)2
,

and notice that b̄ < a
2λ . The value of the observation cost b with respect to the threshold b̄ determines

the respective positions of the boundaries B and C as in the following proposition.

Proposition 5.5. We have that:

(i) if b ≥ b̄, then C(h) ≥ B(h) for every h ∈ [0,∞);
(ii) if b < b̄, then h̄ > 0 where h̄ is defined in (5.3). In particular,

C(h) < B(h), ∀ h ∈ [0, h̄),

C(h̄) = B(h̄),

C(h) > B(h), ∀ h ∈ (h̄,∞).

Proof. If b ≥ b̄, then by (3.14) and (4.8) we have that C(0) ≥ B(0), and so also h̄ = 0. Thus, by
Proposition 5.4, we have C(h) > B(h) for every h ∈ (0,∞). If b < b̄, then C(0) < B(0) and, by continuity
and by definition (5.3), we have that C(h) < B(h) for every h < h̄ with C(h̄) = B(h̄). Finally, by
Proposition 5.4, we obtain C(h) > B(h) for every h > h̄. �

Notice that Figure 1 refers to the case b < b̄.

6. Solution of the problem

In this section we provide the solution to our problem (2.2). Recall that the boundaries B and C satisfy
B(h) ≥ C(h) for h < h̄ and B(h) ≤ C(h) for h ≥ h̄, where h̄ ≥ 0 as in (5.3). Moreover, h̄ > 0 precisely if
b < b̄ = aλ

2(a+λ)2
as in (5.4).

Our main result (Theorem 6.1) can be summarised as follows. If h̄ = 0 (i.e., if b ≥ b̄), then it is optimal
to never increase the control H and to stop as soon as the belief process ΠH goes above the stopping
boundary B. On the other hand, if h̄ > 0 (i.e., if b < b̄), then the optimal strategy is described by a
reflection of the two-dimensional process (H∗,ΠH∗

) along the boundary C until the first time the belief
process ΠH∗

goes above the stopping boundary B (at h = h̄), where it is optimal to stop. Recall Figure 1.
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For a fixed starting point (h, π) ∈ [0,∞) × [0, 1), we first show how to specify the candidate strategy

H∗ ∈ Ah provided h̄ > 0. The function C : [0,∞)→ [
√

2λb/a, 1) is then increasing (recall Corollary 5.3),

and we denote by C−1 : [
√

2λb/a, 1) → [0,∞) its inverse, which we extend by continuity to C−1(π) = 0

for every π ∈ [0,
√

2λb/a]. Define H̃ : [0,∞)× C([0,∞))→ R by

(6.1) H̃t(w) := h ∨
(
C−1

(
sup
s∈[0,t]

ws

)
∧ h̄
)
,

which will be intended as the feedback map of the optimal control. Now consider the stochastic differential
equation

(6.2) dZt = λ(1− Zt) dt− H̃t(Z)Z2
t (1− Zt) dt+

√
H̃t(Z)Zt(1− Zt) dXt,

with Z0 = π. The drift and diffusion coefficients of the SDE (6.2) satisfy the (locally) Lipschitz conditions
of [20, Ch. V, Th. 12.1] and thus the SDE (6.2) admits a unique strong solution Z = (Zt)t≥0. Then,
define the candidate optimal control by

(6.3) H∗0− = h and H∗t := H̃t(Z), t ≥ 0,

where H̃ is defined in (6.1). Since Z is F-adapted and H̃ is bounded, we have that H∗ ∈ Ah. Recall, from
(2.3), that ΠH∗

satisfies the SDE (with random coefficients)

(6.4) dΠH∗
t = λ(1−ΠH∗

t ) dt−H∗t (ΠH∗
t )2(1−ΠH∗

t ) dt+
√
H∗t ΠH∗

t (1−ΠH∗
t ) dXt.

By construction, also Z satisfies the SDE (6.4). Moreover, since H∗ is bounded, the SDE (6.4) admits a
unique strong solution (see, e.g., [19, Theorem 1.3.15]) and so ΠH∗

is indistinguishable from Z.
We next construct a candidate value function for problem (2.2). To do that, define the function

g(h) :=

{
1− C(h̄)−

∫ h̄
h C

′(x)F (x,C(x)) dx h < h̄
1−B(h) h ≥ h̄.

Moreover, define the regions

C := {(h, π) ∈ [0,∞)× [0, 1) : 0 ≤ π ≤ B(h) ∧ C(h)},
D1 := {(h, π) ∈ [0,∞)× [0, 1) : C(h) < π ≤ B(h̄), h < h̄}

and
D2 := {(h, π) ∈ [0,∞)× [0, 1) : π > B(h ∨ h̄)}.

Refer to Figure 2 for an illustration of the three regions. Then, for (h, π) ∈ [0,∞)× [0, 1), the candidate
value function is defined as

(6.5) v(h, π) :=


g(h)−

∫ B(h)∧C(h)
π F (h, y) dy if (h, π) ∈ C

g(C−1(π)) if (h, π) ∈ D1

1− π if (h, π) ∈ D2.

Notice that the function h 7→ g(h) is defined to satisfy g(h) = v(h,C(h)) for h ∈ [0, h̄]. In particular, it
is constructed to be the solution of the ODE g′(h) = vh(h,C(h)) = 0, required from the free-boundary
problem (4.2), with boundary condition g(h̄) = 1− C(h̄).

Notice also that the optimal control H∗, defined in (6.3), acts as follows: (i) if (h, π) ∈ C, then reflect
along the boundary C or continue until ΠH∗

hits the stopping boundary B; (ii) if (h, π) ∈ D1, then
immediately jump to the boundary value C−1(π); (iii) if (h, π) ∈ D2, then stop immediately.

Theorem 6.1. For (h, π) ∈ [0,∞)× [0, 1), define H∗ as in (6.3) and let

(6.6) τ∗ := inf{t ≥ 0 : ΠH∗
t ≥ B(H∗t )}.

Then V (h, π) = v(h, π), where V and v are, respectively, defined in (2.2) and in (6.5). Moreover,
(H∗, τ∗) ∈ Ah × T is an optimal strategy.
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Figure 2. The geometry of the problem depicted by the regions C (in light blue), D1 (in
orange) and D2 (in red).

The proof of Theorem 6.1 is supported by Proposition 6.2, Lemma 6.3 and Lemma 6.4 and it is thus
postponed. In particular, Proposition 6.2 provides smoothness of the value function.

Proposition 6.2. We have that

v ∈ C1
(
[0,∞)× [0, 1)

)
and vππ ∈ C0

(
[0,∞)× [0, 1) \ {(h,B(h)) : h ∈ [h̄, λ/b]}

)
.

Furthermore, for every (h, π) ∈ [0,∞)× [0, 1), we have that

vh(h, π) ≥ 0 and Lv(h, π) + aπ + bh ≥ 0,

where L is defined in (4.1). In particular, Lv + aπ + bh = 0 on C.

Proof. First, it is straightforward to check that v is continuous. Then on C, recalling that F (h,B(h)) = −1,
we obtain

(6.7) vh(h, π) = −
∫ B(h)∧C(h)

π
G(h, y)dy ≥ 0,

where the inequality follows immediately by Propositions 4.3-4.3. Continuity of G := Fh (recall Proposi-
tion 3.1) guarantees continuity of vh on C. Moreover, vh = 0 on D1 ∪ D2 and it is thus clear, from (6.7),
that vh is continuous also across the boundary of C.

By continuity of F , B and C, we obtain continuity of vπ with

vπ(h, π) =

 F (h, π) on C
F (C−1(π), π) on D1

−1 on D2,

Moreover, by continuity of Fπ (recall Proposition 3.1) and C and recalling that G(h,C(h)) = 0, it follows
that

vππ ∈ C0
(
[0,∞)× [0, 1) \ {(h,B(h)) : h ∈ [h̄, λ/b]}

)
,

with

vππ(h, π) =

 Fπ(h, π) on C
Fπ(C−1(π), π) on D1

0 on D2.
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It is clear by construction (recall (3.5)) that Lv + aπ + bh = 0 on C. Furthermore, on D1,

Lv + aπ + bh = 1
2hπ

2(1− π)2Fπ(C−1(π), π) + λ(1− π)F (C−1(π), π) + aπ + bh

=
(
h− C−1(π)

)(
1
2π

2(1− π)2Fπ(C−1(π), π) + b
)

= −
(
h− C−1(π)

)(
λ(1− π)F (C−1(π), π) + aπ

)
.

Now recall from Proposition 4.3 that Fh = G ≥ 0 on D1 (since D1 vanishes if a ≤ 2λb), so

λ(1− π)F (C−1(π), π) + aπ ≥ λ(1− π)F (0, π) + aπ = 0

by (3.6). Consequently, Lv + aπ + bh ≥ 0 on D1.
Also, on D2 we have

Lv + aπ + bh = −λ(1− π) + aπ + bh ≥ 0,

where the inequality uses (3.16) and, if h̄ > 0, also the fact that B(h̄) > B(h) for every h ∈ [0, h̄) (recall
Proposition 5.4). �

Lemma 6.3. We have that 0 ≤ v(h, π) ≤ 1− π for every (h, π) ∈ [0,∞)× [0, 1).

Proof. Since F (h, π) ≤ 0 and C ′(h) > 0 for any (h, π) ∈ [0,∞)× [0, 1), it is easy to see that v(h, π) ≥ 0.
By construction, v(h, π) = 1 − π for (h, π) ∈ D2 and v(h, π) = v(C−1(π), π) for (h, π) ∈ D1. Therefore,
we only need to prove that v(h, π) ≤ 1 − π for (h, π) ∈ C. Since vππ(h, π) = Fπ(h, π) ≤ 0 for (h, π) ∈ C,
π 7→ v(h, π) is concave on C. Notice that v(h,B(h)) = 1− B(h) and vπ(h,B(h)) = −1. Then, for h ≥ h̄
and π ≤ B(h), by concavity we also obtain v(h, π) ≤ 1− π. Now recall that, for h < h̄,

v(h,C(h)) = g(h) = 1− C(h̄) +

∫ h̄

h
C ′(x)F (x,C(x))dx.

Thus, v(h,C(h)) ≤ 1− C(h) if and only if

C(h̄)− C(h) ≥ −
∫ h̄

h
C ′(x)F (x,C(x))dx.

The last inequality holds since F (x,C(x)) ≥ −1 (given that C(x) ≤ B(x) for x ∈ [0, h̄]) and thus
v(h,C(h)) ≤ 1 − C(h). Finally, vπ(h,C(h)) = F (h,C(h)) ∈ [−1, 0) and, again by concavity, we obtain
v(h, π) ≤ 1− π also for h ≤ h̄ and π ≤ C(h). This concludes the proof. �

Lemma 6.4. Let (h, π) ∈ [0,∞)× [0, 1) and τ∗ be defined as in (6.6). Then EH∗
π [τ∗] <∞.

Proof. Denote B̄ := B(h̄). For π ∈ [0, B̄], define

u(π) :=
1

λ
log

1− π
1− B̄

.

Then u satisfies {
λ(1− π)uπ + 1 = 0 π ∈ [0, B̄]

u(B̄) = 0

(in fact, u(π) = EHπ [τB̄], where τB̄ := inf{t ≥ 0 : ΠH
t ≥ B̄} is the first passage time ΠH over B̄ if

H ≡ 0). Since u is concave, an application of Ito’s formula shows that the process u(ΠH∗
t ) + t is a

PH∗
-supermartingale, and optional sampling gives

u(π) ≥ EH
∗

π [u(ΠH∗
τ∗∧n) + τ∗ ∧ n] ≥ EH

∗
π [τ∗ ∧ n]

for all n ∈ N. Letting n→∞, monotone convergence then yields EH∗
π [τ∗] ≤ u(π) <∞. �

Proof of Theorem 6.1. We want to apply the Verification Theorem 2.2. By Lemma 6.3, we have that
0 ≤ v(h, π) ≤ 1 − π for every (h, π) ∈ [0,∞) × [0, 1). We now want to prove that, for any H ∈ Ah, the
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process Y = Y H in (2.5) is a (PH ,F)-submartingale. By the regularity properties of v, see Proposition 6.2,
we can apply a generalised Ito’s formula ([18]) to Y and obtain

Yt = v(h, π) +

∫ t

0

[
Lv(Hs,Π

H
s ) + aΠH

s + bHs

]
ds+

∫ t

0
vh(Hs,Π

H
s ) dHc

s(6.8)

+
∑

0≤s≤t

[
v(Hs,Π

H
s )− v(Hs−,Π

H
s )
]

+

∫ t

0
vπ(Hs−,Π

H
s )
√
Hs−ΠH

s (1−ΠH
s ) dŴH

s ,

where Hc
t := Ht −

∑
s∈[0,t] ∆Hs is the continuous part of H and ∆Ht := Ht −Ht−. Since vπ is bounded

and H is admissible (and thus bounded) the stochastic integral in (6.8) is a (PH ,F)-martingale. Since,
by Proposition 6.2, Lv + aπ + bh ≥ 0 and vh ≥ 0 then it follows that Y H is a (PH ,F)-submartingale, so
(i) in Theorem 2.2 holds.

Now, since v(h,B(h)) = 1−B(h) for h ≥ h̄, and since Lv + aπ + bh = 0 on C and vh(h,C(h)) = 0 for
h ∈ [0, h̄] by Proposition 6.2, it is clear that (ii) and (iv) also hold. Since (iii) is proved in Lemma 6.4,
this concludes the proof. �

Appendix A. Properties of the functions F and G

In this appendix we provide some results on the functions F and G = Fh. In particular, we prove
that F ∈ C1([0,∞)× [0, 1)), which also means that G ∈ C([0,∞)× [0, 1)). We start by introducing two
lemmas.

Lemma A.1. Let ϕ : [0, 1)→ R be such that ϕ ∈ C1((0, 1);R). Then, for every (h, π) ∈ (0,∞)× (0, 1),
we have ∫ π

0

1

h

ϕ(y)

y2(1− y)

(
f(y)

f(π)

) 2λ
h

dy =
ϕ(π)

2λ
− 1

2λ

∫ π

0
ϕ′(y)

(
f(y)

f(π)

) 2λ
h

dy,

where f is defined in (3.4).

Proof. Since, for every y ∈ (0, 1),
f ′(y)

f(y)
=

1

y2(1− y)
,

we have that ∫ π

0

1

h

ϕ(y)

y2(1− y)

(
f(y)

f(π)

) 2λ
h

dy =
1

2λ
f(π)−

2λ
h

∫ π

0
ϕ(y)

d

dy

(
f(y)

2λ
h

)
dy.

Then, the result follows easily by applying integration by parts. �

Lemma A.2. Let ϕ : [0, 1]→ R be such that ϕ ∈ C1((0, 1);R) and, for every y ∈ (0, 1),

(A.1) (1− y)[yϕ′(y) + 2ϕ(y)] + yϕ(y) ≥ 0.

Then, for every h ∈ (0,∞), the function Γh : [0, 1]→ R defined by

Γh(π) :=

∫ π

0

ϕ(y)

(1− y)2

(
f(y)

f(π)

) 2λ
h

dy,

is non-decreasing on (0, 1).

Proof. Let π ∈ (0, 1). Then,

Γ′h(π) =
ϕ(π)

(1− π)2
− 2λ

h

1

π2(1− π)f(π)
2λ
h

∫ π

0

ϕ(y)

(1− y)2
f(y)

2λ
h dy.

Notice that, for π ∈ (0, 1), the sign of Γ′h is the same as the sign of Λh, where Λh is defined as

Λh(π) :=
h

2λ

π2ϕ(π)f(π)
2λ
h

1− π
−
∫ π

0

ϕ(y)

(1− y)2
f(y)

2λ
h dy.
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We have that Λh(0) = 0 and

Λ′h(π) =
h

2λ
f(π)

2λ
h

(1− π)[π2ϕ′(π) + 2πϕ(π)] + π2ϕ(π)

(1− π)2
.

Thus, if condition (A.1) holds, we obtain the desired result. �

Remark A.3. Notice that condition (A.1) holds, in particular, if ϕ ≥ 0 and ϕ′ ≥ 0.

We can now show that F ∈ C1([0,∞)× [0, 1)).

Proof of Proposition 3.1. The proof is divided into three steps: continuity of F , continuity of G = Fh and
continuity of Fπ.

Step 1. (Continuity of F .) Recall the definition of F in (3.3), (3.6) and (3.7). It is easy to see that
F is continuous at any point (h, π) ∈ (0,∞)× (0, 1). We start by proving that, for every π0 ∈ (0, 1), we
have that

(A.2) lim
(h,π)→(0,π0)

F (h, π) = − aπ0

λ(1− π0)
= F (0, π0).

From (3.3), we have that

lim
(h,π)→(0,π0)

F (h, π) = − aπ0

λ(1− π0)
+

1

λ
lim

(h,π)→(0,π0)

∫ π

0

a+ bh

(1− y)2

(
f(y)

f(π)

) 2λ
h

dy.

Clearly,

lim inf
(h,π)→(0,π0)

∫ π

0

a+ bh

(1− y)2

(
f(y)

f(π)

) 2λ
h

dx ≥ 0.

Now, let

Γh(π) :=

∫ π

0

a+ bh

(1− y)2

(
f(y)

f(π)

) 2λ
h

dx,

and note that π 7→ Γh(π) is non-decreasing for every h ∈ (0,∞) by Lemma A.2. Without loss of generality,
in computing the limit in (A.2), we can consider π ∈ (π0 − δ, π0 + δ) for δ ∈ (0, π0). Thus,

lim sup
(h,π)→(0,π0)

∫ π

0

a+ bh

(1− y)2

(
f(y)

f(π)

) 2λ
h

dy ≤ lim sup
h→0

∫ π0+δ

0

a+ bh

(1− y)2

(
f(y)

f(π0 + δ)

) 2λ
h

dy = 0,

where the last equality follows by the dominated convergence theorem. Hence, (A.2) holds.
To conclude Step 1 we prove that, for every h0 ∈ [0,∞),

(A.3) lim
(h,π)→(h0,0)

F (h, π) = −bh0

λ
= F (h0, 0)

provided that the limit on the right-hand-side exists. From (3.3), we have that

lim
(h,π)→(h0,0)

F (h, π) = −bh0

λ
+

1

λ
lim

(h,π)→(h0,0)

∫ π

0

a+ bh

(1− y)2

(
f(y)

f(π)

) 2λ
h

dy.

Clearly,

0 ≤ lim inf
(h,π)→(h0,0)

∫ π

0

a+ bh

(1− y)2

(
f(y)

f(π)

) 2λ
h

dx ≤ lim sup
(h,π)→(h0,0)

∫ π

0

a+ bh

(1− y)2

(
f(y)

f(π)

) 2λ
h

dy

≤ lim sup
(h,π)→(h0,0)

∫ π

0

a+ bh

(1− y)2
dy = 0.

Hence, (A.3) holds.
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Step 2. (Continuity of G.) By substituting the explicit expression (3.3) of F into equation (4.3), we
obtain that, for (h, π) ∈ (0,∞)× (0, 1),

(A.4) G(h, π) = I1(h, π) + I2(h, π),

where

I1(h, π) := −2b

h

∫ π

0

1

y2(1− y)2

(
f(y)

f(π)

) 2λ
h

dy,

I2(h, π) :=
2

h

∫ π

0

I3(h, y)

y2(1− y)

(
f(y)

f(π)

) 2λ
h

dy

and

I3(h, y) :=
1

h

∫ y

0

a+ bh

(1− z)2

(
f(z)

f(y)

) 2λ
h

dz.

It is then easy to see that G is continuous at any point (h, π) ∈ (0,∞) × (0, 1). We now want to show
that, for every π0 ∈ (0, 1),

(A.5) lim
(h,π)→(0,π0)

G(h, π) =
aπ2

0 − 2λb

2λ2(1− π0)
= G(0, π0).

By Lemma A.1, we obtain that

(A.6) I1(h, π) = − b
λ

1

1− π
+
b

λ

∫ π

0

1

(1− y)2

(
f(y)

f(π)

) 2λ
h

dy.

Therefore,

(A.7) lim
(h,π)→(0,π0)

I1(h, π) = − b
λ

1

1− π0
+
b

λ
lim

(h,π)→(0,π0)

∫ π

0

1

(1− y)2

(
f(y)

f(π)

) 2λ
h

dy = − b
λ

1

1− π0
.

where the second equality is calculated as in Step 1.
Applying Lemma A.1 to I3, we obtain

I3(h, y) =
(a+ bh)y2

2λ(1− y)
− 1

2λ

∫ y

0

(a+ bh)(2z − z2)

(1− z)2

(
f(z)

f(y)

) 2λ
h

dz.

Therefore, by definition of I2, we have

(A.8) I2(h, π) =

∫ π

0

1

h

(a+ bh)y2

λ(1− y)

1

y2(1− y)

(
f(y)

f(π)

) 2λ
h

dy + I4(h, π),

where

I4(h, π) := − 1

λ

∫ π

0

1

y2(1− y)

(
f(y)

f(π)

) 2λ
h
[ ∫ y

0

1

h

(a+ bh)z2(2z − z2)

1− z
1

z2(1− z)

(
f(z)

f(y)

) 2λ
h

dz

]
dy.

By applying again Lemma A.1 to (A.8), we obtain

(A.9) I2(h, π) =
(a+ bh)π2

2λ2(1− π)
− 1

2λ2

∫ π

0

(a+ bh)(2y − y2)

(1− y)2

(
f(y)

f(π)

) 2λ
h

dy + I4(h, π).

In a similar way as was done for I1 in Step 1 above, by means of Lemma A.2, we obtain that

(A.10) lim
(h,π)→(0,π0)

1

λ2

∫ π

0

(a+ bh)(2y − y2)

(1− y)2

(
f(y)

f(π)

) 2λ
h

dy = lim
(h,π)→(0,π0)

I4(h, π) = 0.

Therefore,

(A.11) lim
(h,π)→(0,π0)

I2(h, π) =
aπ2

0

2λ2(1− π0)
.
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By (A.7) and (A.11), the limit in (A.5) holds.
To conclude Step 2 we want to prove that, for every h0 ∈ [0,∞), we have that

(A.12) lim
(h,π)→(h0,0)

G(h, π) = − b
λ

= G(h0, 0).

From (A.6), we have that

lim
(h,π)→(h0,0)

I1(h, π) = − b
λ

+
b

λ
lim

(h,π)→(h0,0)

∫ π

0

1

(1− y)2

(
f(y)

f(π)

) 2λ
h

dy.

Clearly,

0 ≤ lim inf
(h,π)→(h0,0)

∫ π

0

1

(1− y)2

(
f(y)

f(π)

) 2λ
h

dy ≤ lim sup
(h,π)→(h0,0)

∫ π

0

1

(1− y)2

(
f(y)

f(π)

) 2λ
h

dy

≤ lim sup
π→0

∫ π

0

1

(1− y)2
dy = 0.

Hence,

(A.13) lim
(h,π)→(h0,0)

I1(h, π) = − b
λ
.

In a similar way, by (A.9), we obtain

(A.14) lim
(h,π)→(h0,0)

I2(h, π) = 0.

Therefore, (A.13) and (A.14) imply (A.12).
Step 3. (Continuity of Fπ.) For every (h, π) ∈ (0,∞)× (0, 1), we have that

Fπ(h, π) = − 2

hπ2(1− π)

[
aπ + bh

1− π
+ λF (h, π)

]
.

Substituting the explicit expression (3.3) for F , we have

Fπ(h, π) = − 2(a+ bh)

π2(1− π)

∫ π

0

1

h

1

(1− y)2

(
f(y)

f(π)

) 2λ
h

dy,

and Lemma A.1 yields that

(A.15) Fπ(h, π) = − a+ bh

λ(1− π)2
+

a+ bh

π2(1− π)

∫ π

0

2y − y2

(1− y)2

(
f(y)

f(π)

) 2λ
h

dy.

By (A.10), for every π0 ∈ (0, 1), we thus obtain

lim
(h,π)→(0,π0)

Fπ(h, π) = Fπ(0, π0) = − a

λ(1− π0)2
.

To conclude Step 3 (and so the proof of Proposition 3.1) we want to prove that, for every h0 ∈ [0,∞),

(A.16) lim
(h,π)→(h0,0)

Fπ(h, π) = Fπ(h0, 0) = −a+ bh0

λ
.

By (A.15), we obtain

lim
(h,π)→(h0,0)

Fπ(h, π) = −a+ bh0

λ
+ lim

(h,π)→(h0,0)

a+ bh

π2(1− π)

∫ π

0

2y − y2

(1− y)2

(
f(y)

f(π)

) 2λ
h

dy.

Clearly, we have that

lim inf
(h,π)→(h0,0)

a+ bh

π2(1− π)

∫ π

0

2y − y2

(1− y)2

(
f(y)

f(π)

) 2λ
h

dy ≥ 0.
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Without loss of generality, when computing the limit in (A.16), we can consider h ∈ (0, h0 + δ) for some
δ > 0. Thus, we obtain

lim sup
(h,π)→(h0,0)

a+ bh

π2(1− π)

∫ π

0

2y − y2

(1− y)2

(
f(y)

f(π)

) 2λ
h

dy

≤ lim sup
π→0

a+ b(h0 + δ)

π2(1− π)

∫ π

0

2y − y2

(1− y)2

(
f(y)

f(π)

) 2λ
h0+δ

dy = 0,

where the last equality follows for example by using the estimate

f(y)

f(π)
≤ e

1
π
− 1
y .

Hence (A.16) holds. �

We conclude this appendix with the proof of Lemma 4.2.

Proof of Lemma 4.2. If h = 0 the properties are easily obtained from the explicit equation (4.5).

Let h ∈ [0,∞) and π ∈ (0, 1). Since e1/y ≤ e1/z if 0 < z ≤ y ≤ π, we have that

(A.17)

∫ y

0

1

(1− z)2

(
f(z)

f(y)

) 2λ
h

dz ≤
(

y

1− y

)− 2λ
h
∫ y

0

1

(1− z)2

(
z

1− z

) 2λ
h

dz =
h

h+ 2λ

y

1− y
.

Recall the form of G in (A.4) and thus notice that

I3(h, y) =

∫ y

0

a+ bh

(1− z)2

(
f(z)

f(y)

) 2λ
h

dz ≤ h(a+ bh)

h+ 2λ

y

1− y
.

By Lemma A.1, we obtain

I1(h, π) = − b

λ(1− π)
+
b

λ

∫ π

0

1

(1− y)2

(
f(y)

f(π)

) 2λ
h

dy.

Therefore, from (A.4), we have that

G(h, π) ≤ − b

λ(1− π)
+
b

λ

∫ π

0

1

(1− y)2

(
f(y)

f(π)

) 2λ
h

dy

+
2(a+ bh)

h+ 2λ

∫ π

0

1

h

1

y(1− y)2

(
f(y)

f(π)

) 2λ
h

dy.

By applying again Lemma A.1 to the second integral, we obtain

G(h, π) ≤ − b

λ(1− π)
+
b

λ

∫ π

0

1

(1− y)2

(
f(y)

f(π)

) 2λ
h

dy

+
a+ bh

λ(h+ 2λ)

π

1− π
− a+ bh

λ(h+ 2λ)

∫ π

0

1

(1− y)2

(
f(y)

f(π)

) 2λ
h

dy

=
−b(h+ 2λ) + aπ + bhπ

λ(h+ 2λ)(1− π)
+

2λb− a
λ(h+ 2λ)

∫ π

0

1

(1− y)2

(
f(y)

f(π)

) 2λ
h

dy.

Using again (A.17), we arrive at

G(h, π) ≤ (h+ 2λ)[−b(h+ 2λ) + aπ + bhπ] + (2λb− a)h

λ(h+ 2λ)2(1− π)

provided a ≤ 2λb. Hence, limπ→1G(h, π) = −∞ if a < 2λb and limπ→1G(h, π) < 0 if a = 2λb.
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To show that limπ→1G(h, π) = +∞ if a > 2λb, note that we can estimate the term in (A.17) from
below as ∫ y

0

1

(1− z)2

(
f(z)

f(y)

) 2λ
h

dz ≥ e
2λ
h

( 1
y
− 1

(1−ε)y )
∫ y

(1−ε)y

1

(1− z)2

(
z(1− y)

y(1− z)

) 2λ
h

dz

≥ e
2λ
h

( 1
y
− 1

(1−ε)y ) h

h+ 2λ

(
y

1− y
− ε−(2λ+h)/h

)
.

Consequently, for every ε ∈ (0, 1) there exists δ ∈ (0, 1) such that∫ y

0

1

(1− z)2

(
f(z)

f(y)

) 2λ
h

dz ≥ h

h+ 2λ
(1− ε) y

1− y
, ∀ y ∈ (1− δ, 1).

Using this lower bound and applying a similar argument as above by means of Lemma A.1, we obtain
that limπ→1G(h, π) = +∞ if a > 2λb. �
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Cambridge university press, 2000.
[21] A. N. Shiryaev. Two problems of sequential analysis. Cybernetics, 3(2):63–69 (1969), 1967.



A DETECTION PROBLEM WITH A MONOTONE OBSERVATION RATE 23

[22] A. N. Shiryayev. Optimal stopping rules. Applications of Mathematics, Vol. 8. Springer-Verlag, New York-Heidelberg,
1978. Translated from the Russian by A. B. Aries.

[23] W. Zhong. Optimal dynamic information acquisition. Econometrica, 90(4):1537–1582, 2022.

E. Ekström: Department of Mathematics, Uppsala University, Box 480, 75106, Uppsala, SWEDEN.
Email address: erik.ekstrom@math.uu.se

A. Milazzo: Department of Mathematics, Uppsala University, Box 480, 75106, Uppsala, SWEDEN.
Email address: alessandro.milazzo@math.uu.se

mailto:erik.ekstrom@math.uu.se
mailto:alessandro.milazzo@math.uu.se

	1. Introduction
	1.1. Related literature
	1.2. Outline of the paper

	2. Problem formulation and verification theorem
	3. The uncontrolled problem 
	4. The controlled problem: A reflecting boundary
	5. Behaviour of the boundaries
	6. Solution of the problem
	Appendix A. Properties of the functions F and G
	References

